CUBE SUGAR CONTAINER

技術系のこと書きます。

Mac で UVC 対応の Web カメラを使ってみる

ちょっとした理由があって、外付けの Web カメラを Mac で使いたくなった。 ただ、大抵の Mac にはインカメラが標準で付いているせいか、別付けの Web カメラを使ってる人があんまりいないみたい。 なので、使えたよって記録を備忘録としてここに書き残して…

Python: RFE (Recursive Feature Elimination) で特徴量を選択してみる

今回は RFE (Recursive Feature Elimination) と呼ばれる手法を使って特徴量選択 (Feature Selection) してみる。 教師データの中には、モデルの性能に寄与しない特徴量が含まれている場合がある。 アルゴリズムがノイズに対して理想的にロバストであれば、…

Python: IsolationForest で教師なし学習の外れ値検知を試す

今回は教師なし学習で外れ値の検知に使える IsolationForest というアルゴリズムを試してみる。 このアルゴリズムの興味深いところは、教師データの中にある程度外れ値が含まれていても構わないという点。 つまり、アノテーションしていないデータをそのまま…

Python: scikit-learn の cross_val_predict() 関数で OOF な特徴量を作る

scikit-learn には cross_val_predict() という関数がある。 この関数は、教師データを k-Fold などで分割したときに OOF (Out of Fold) なデータの目的変数を推論する目的で使われることが多い。 なお、OOF (Out of Fold) というのは、k-Fold などでデータ…

Python: LightGBM でカスタムメトリックを扱う

今回は LightGBM で、組み込みで用意されていない独自の評価指標 (カスタムメトリック) を扱う方法について。 ユースケースとしては、学習自体は別の評価指標を使って進めつつ、本来の目標としている評価指標を同時に確認するといったもの。 例えば、精度 (A…

Python: LightGBM の cv() 関数から学習済みモデルを得る

勾配ブースティング決定木を扱うフレームワークの一つである LightGBM の Python API には cv() という関数がある。 この "cv" というのは Cross Validation の略で、その名の通り LightGBM のモデルを交差検証するための関数になっている。 具体的には、こ…

Google Cloud SDK の CLI でデフォルトのゾーンやリージョンを設定する

Google Cloud SDK の CLI を使っていると何度も --zone や --region といったオプションを指定することになってめんどくさい。 いつも同じ場所を使うのであれば、デフォルトを指定しておくと便利になる。 使った環境は次の通り。 $ sw_vers ProductName: Mac…

Google Compute Engine で SSH Port Forwarding する

今回は Google Compute Engine のインスタンスで SSH Port Forwarding する方法について。 SSH Port Forwarding を使うと、インスタンスのポートをインターネットに晒すことなく利用できる。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X Produc…

Google Compute Engine のカスタムイメージを作る

今回は Google Compute Engine でカスタムイメージを作る方法について。 カスタムイメージというのは、既存のベースイメージに何らかのカスタマイズを施したイメージを指す。 あらかじめカスタムイメージを作っておくことで環境構築の手間をはぶくことができ…

Google Cloud SDK の CLI で Compute Engine を操作する

今回は Google Cloud SDK を使って CLI から Compute Engine を操作してみる。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.14.3 BuildVersion: 18D109 $ gcloud version Google Cloud SDK 238.0.0 bq 2.0.42 core 2019.03.…

Python: pandas の Series#apply() で複数カラムの特徴量を一度に作る

今回は、複数カラムの特徴量を一度に作りたいなーっていう、たまに思うやつを書く。 結論から先に書いてしまうと、返り値を Series にしてやれば良い。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.14.3 BuildVersion: 18D1…

Python: pandas でグループごとにデータをサンプリングする

取り扱うデータをサンプリングする機会は意外と多い。 ユースケースとしては、例えばデータが多すぎて扱いにくい場合や、グループごとに件数の偏りのある場合が挙げられる。 今回は pandas を使ってグループごとに特定の件数をサンプリングする方法について…

SQLite3 のテーブルに CSV でデータを読み込む

メモリに乗り切らない程度のちょっとした集計をするのに SQLite3 のデータベースを使うのが意外と便利だなーと思っている今日このごろ。 サポートされている SQL の構文や関数が少ないするのはネックだけど、まあ手軽さには変えられないという感じ。 今回は …

Python: テストで SQLite3 のインメモリデータベースを使うときの問題点と解決策

今回は SQLite3 のインメモリデータベースをテストで使うときに生じる問題点と、その解決策について。 SQLite3 のインメモリデータベースを使うと、追加でソフトウェアをインストールしたり、データベースファイルを作ることなくリレーショナルデータベース…

Python: Adversarial Validation について

最近、Kaggle などのデータ分析コンペで使われることの多い Adversarial Validation という手法について調べたり考えていたので書いてみる。 背景 Adversarial Validation という手法は、データ分析コンペに存在する、ある課題を解決するために考案された。 …

Python: scikit-learn の cross_validate() 関数で独自の評価指標を計算する

今回は scikit-learn の cross_validate() 関数で、組み込みでは用意されていないような評価指標を計算する方法について書く。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.14.3 BuildVersion: 18D109 $ python -V Python 3…

Python: CatBoost を使ってみる

今回は CatBoost という、機械学習の勾配ブースティング決定木 (Gradient Boosting Decision Tree) というアルゴリズムを扱うためのフレームワークを試してみる。 CatBoost は、同じ勾配ブースティング決定木を扱うフレームワークの LightGBM や XGBoost と…

Python: k-NN Feature Extraction 用のライブラリ「gokinjo」を作った

表題の通り、k-NN Feature Extraction という特徴量抽出の手法に使う「gokinjo」という Python のライブラリを作った。 今回はライブラリの使い方について紹介してみる。 github.com k-NN Feature Extraction で得られる特徴量は、Otto Group Product Classi…

Linux Bridge でタグ VLAN を使う

今回は Linux Bridge (ネットワークブリッジ) でタグ VLAN (IEEE 802.1Q) を使う方法について。 設定が足らなくてだいぶ悩んだのでメモしておく。 使った環境は次の通り。 $ cat /etc/lsb-release DISTRIB_ID=Ubuntu DISTRIB_RELEASE=18.04 DISTRIB_CODENAME…

Python: 自作ライブラリのパッケージングについて

今回は Python で自作したライブラリなどをパッケージングして、配布できる状態にする方法について書いてみる。 現在の Python では、パッケージングに setuptools というサードパーティ製のライブラリを使うのがデファクトスタンダードになっている。 この …

Python: Unix における python* コマンドと処理系のバージョンについて (PEP394)

今回は Unix ライクなシステムにおける python* コマンドの振る舞いと、処理系のバージョンについて色々と書いてみる。 きっかけは、以下のブログ記事を目にしたため。 rheb.hatenablog.com 上記のブログでは Red Hat Enterprise Linux 8 に搭載される予定の…

Python: XGBoost を使ってみる

XGBoost (eXtreme Gradient Boosting) は勾配ブースティング決定木 (Gradient Boosting Decision Tree) のアルゴリズムを実装したオープンソースのライブラリ。 最近は、同じ GBDT 系のライブラリである LightGBM にややお株を奪われつつあるものの、依然と…

Python: Hyperopt で機械学習モデルのハイパーパラメータを選ぶ

今回は、機械学習モデルのハイパーパラメータをチューニングするのに用いられる Python のフレームワークの一つとして Hyperopt を使ってみる。 このフレームワークは、機械学習コンペティションの一つである Kaggle でよく用いられるものとして知られている…

Ubuntu 18.04 LTS でコマンドのソースコードを取得する

Ubuntu を使っていて、このコマンドってどんな処理してるんだろうなーとか気になったときにソースコードを取り寄せる方法について。 使った環境は次の通り。 $ cat /etc/lsb-release DISTRIB_ID=Ubuntu DISTRIB_RELEASE=18.04 DISTRIB_CODENAME=bionic DISTR…

macOS で Raspberry Pi 用のシリアルコンソールケーブル (PL2303) を使う

Raspberry Pi はシリアル接続のルートを確保しておくと、操作するのにディスプレイやキーボードを用意する必要がない。 最終的にネットワーク越しに SSH などで操作するにしても、初期のセットアップで楽ができる。 今回使ったシリアルコンソールケーブルは…

macOS で Raspbian のブートイメージを SD カードに書き込む

久しぶりに Raspberry Pi を扱う機会があったので、思い出しがてら書いておく。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.14.2 BuildVersion: 18C54 使ったカードリーダーはこちら。 特にドライバなどをインストールしな…

加湿器を買ってみて分かったこと

今回は久しぶりに純粋な技術系ではないネタについて書いてみる。 最近、家に加湿器 (より正確には加湿空気清浄機) を導入してみた。 そこで、購入にあたって調べたことや、実際に使ってみて分かったことについて書き残しておく。 背景 我が家では、去年の春…

Python: 機械学習における不均衡データの問題点と対処法について

機械学習における分類問題では、扱うデータセットに含まれるラベルに偏りのあるケースがある。 これは、例えば異常検知の分野では特に顕著で、異常なデータというのは正常なデータに比べると極端に数が少ない。 正常なデータが 99.99% なのに対し異常なデー…

Python: アンサンブル学習の Voting を試す

今回は機械学習におけるアンサンブル学習の一種として Voting という手法を試してみる。 これは、複数の学習済みモデルを用意して多数決などで推論の結果を決めるという手法。 この手法を用いることで最終的なモデルの性能を上げられる可能性がある。 実装に…

Python: Optuna で機械学習モデルのハイパーパラメータを選ぶ

今回は、ハイパーパラメータを最適化するフレームワークの一つである Optuna を使ってみる。 このフレームワークは国内企業の Preferred Networks が開発の主体となっていて、ほんの数日前にオープンソースになったばかり。 ハイパーパラメータ自動最適化ツ…