CUBE SUGAR CONTAINER

技術系のこと書きます。

リモートサーバの Jupyter Notebook を SSH Port Forwarding 経由で使う

一般的に Jupyter Notebook はローカルの環境にインストールして使うことが多い。 ただ、ローカルの環境は計算資源が乏しい場合もある。 そんなときは IaaS などリモートにあるサーバで Jupyter Notebook を使いたい場面が存在する。 ただ、セキュリティのこ…

Python: デコレータについて

Python の特徴的な構文の一つにデコレータがある。 便利な機能なんだけど、最初はとっつきにくいかもしれない。 そこで、今回はデコレータについて一通り色々と書いてみる。 先に断っておくと、とても長い。 これを読むと、以下が分かる。 デコレータの本質 …

Python: メモ化した内容を percache で永続化する

プログラムを高速化する手法の一つとしてメモ化がある。 これは、関数の返り値をキャッシュしておくことで、同じ呼び出しがあったときにそれを使い回すというもの。 今回は、メモ化でキャッシュした内容を補助記憶装置に永続化できる Python のパッケージと…

Python: グローバルスコープにあるオブジェクトの __del__() でインポートしたときの挙動について

今回は Python の __del__() メソッドでちょっと不思議な挙動を目にしてから色々と調べてみた話。 具体的には、グローバルスコープにあるオブジェクトの __del__() で別のモジュールをインポートしてるとき、そのオブジェクトがプロセス終了時に破棄されると…

Python: scikit-learn のロジスティック回帰を使ってみる

最近、意外とロジスティック回帰が使われていることに気づいた。 もちろん世間にはもっと表現力のある分類器がたくさんあるけど、問題によってどれくらい複雑なモデルが適しているかは異なる。 それに、各特徴量がどのように働くか重みから確認したり、単純…

Python: scikit-learn の Pipeline 機能をデバッグする

今回はだいぶ小ネタ。 以前にこのブログでも記事にしたことがある scikit-learn の Pipeline 機能について。 blog.amedama.jp scikit-learn の Pipeline 機能は機械学習に必要となる複数の工程を一つのパイプラインで表現できる。 ただ、パイプラインを組ん…

Python: 層化抽出法を使ったK-分割交差検証 (Stratified K-Fold CV)

K-分割交差検証 (K-Fold CV) を用いた機械学習モデルの評価では、元のデータセットを K 個のサブセットに分割する。 そして、分割したサブセットの一つを検証用に、残りの K - 1 個を学習用に用いる。 上記の作業で、元のデータセットを K 個のサブセットに…

ソースコードから Python をインストールするときにビルドされないモジュールを確認する

ソースコードから Python をインストールするとき、環境によってはビルドされないモジュールが出てくる。 今回は、どんなモジュールがビルドされなかったかを確認する方法について。 先に結論から書くと、ビルドされなかったモジュールがあるときはログにメ…

SSHFS を使ってリモートホストのディレクトリをマウントする

SSH でログインできるリモートホストとのファイルのやり取りは SCP を使うことが多い。 ただ、頻繁にやり取りするときは、それも面倒に感じることがある。 ただ、あんまり手間のかかる設定作業はしたくない。 そんなときは SSHFS を使うと手軽に楽ができそう…

Python: ベイズ最適化で機械学習モデルのハイパーパラメータを選ぶ

機械学習モデルにおいて、人間によるチューニングが必要なパラメータをハイパーパラメータと呼ぶ。 ハイパーパラメータをチューニングするやり方は色々とある。 例えば、良さそうなパラメータの組み合わせを全て試すグリッドサーチや、無作為に試すランダム…

Apache Hive で SELECT した結果から ARRAY を作る

Apahe Hive を使っていて、テーブルから SELECT してきた結果から ARRAY 型のカラムを作る方法が分からなくて調べた。 結論から先に述べると COLLECT_LIST() を使えば良い。 使った環境は次の通り。 $ cat /etc/redhat-release CentOS Linux release 7.5.180…

Python: pandas と Google BigQuery を連携させる

ぶっちゃけ pandas は大規模なデータセットを扱うのが苦手だ。 だいたい一桁 GB なら我慢と工夫で何とかなるけど、二桁 GB を超えると現実的な処理時間で捌けなくなってくる。 そこで、今回は pandas を Google BigQuery と連携させることで重たい処理をオフ…

Ubuntu 18.04 LTS に後から GUI (X Window System) を追加する

Ubuntu 18.04 LTS をサーバ版でインストールするとデスクトップ環境が入らない。 とはいえ後から欲しくなるときもあるので、その方法について。 ちなみに必要なパッケージの名称は Ubuntu 16.04 LTS と同じだった。 使った環境は次の通り。 $ cat /etc/lsb-r…

Apache Hive 1.x の INSERT 文の仕様でハマった話

今回は、タイトルの通り Apache Hive の 1.x を使っていたとき INSERT 文の仕様でハマった話。 先に概要を説明しておくと Apache Hive の 1.x と 2.x ではサポートする構文が変わっている。 具体的には 1.x では INSERT INTO ... SELECT 文で後続に FROM ...…

Python: pandas の DataFrame, Series, Index を拡張する

Python でデータ分析をするときに、ほぼ必ずといって良いほど使われるパッケージとして pandas がある。 そのままでも便利な pandas だけど、代表的なオブジェクトの DataFrame, Series, Index には実は独自の拡張を加えることもできる。 これがなかなか面白…

Python: gzip モジュールを使ってデータを圧縮・解凍する

今回は Python の標準ライブラリの gzip モジュールの使い方について。 上手く使えば Python から大きなデータを扱うときにディスクの節約になるかな。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.13.5 BuildVersion: 17F7…

unzip で "need PK compat. v5.1 (can do v4.5)" と言われて解凍できない件

ある日、パスワードつきの ZIP ファイルを macOS 組み込みの unzip コマンドで解凍しようとしたところ、タイトルのようなエラーになった。 今回は、その対処方法と、そもそもどういったときに起こるのかについて。 結論から先に要約してしまうと、次の通り。…

Python: Selenium + Headless Chrome で Web ページ全体のスクリーンショットを撮る

スクレイピングした Web サイトからページ全体のスクリーンショットを撮影したい機会があった。 そこで Selenium の Python バインディングと Headless Chrome を使ったところ実現できたのでメモしておく。 ちなみに、ページ全体でなければ Headless Chrome …

Python: パラメータ選択を伴う機械学習モデルの交差検証について

今回は、ハイパーパラメータ選びを含む機械学習モデルの交差検証について書いてみる。 このとき、交差検証のやり方がまずいと汎化性能を本来よりも高く見積もってしまう恐れがある。 汎化性能というのは、未知のデータに対処する能力のことを指す。 ようする…

Python: tqdm で処理の進捗状況をプログレスバーとして表示する

最近は Python がデータ分析や機械学習の分野でも使われるようになってきた。 その影響もあって REPL や Jupyter Notebook 上でインタラクティブに作業することも増えたように感じる。 そんなとき、重い処理を走らせると一体いつ終わるのか分からず途方に暮…

Python: matplotlib で動的にグラフを生成する

今回は matplotlib を使って動的にグラフを生成する方法について。 ここでいう動的というのは、データを逐次的に作って、それを随時グラフに反映していくという意味を指す。 例えば機械学習のモデルを学習させるときに、その過程 (損失の減り方とか) を眺め…

Python: pandas の永続化フォーマットについて調べた

以前、このブログでは pandas の DataFrame を Pickle として保存することで読み込み速度を上げる、というテクニックを紹介した。 blog.amedama.jp 実は pandas がサポートしている永続化方式は Pickle 以外にもある。 今回は、その中でも代表的な以下の永続…

shellcheck でシェルスクリプトのコードの質をチェックする

正しく動作するシェルスクリプトを書くのは難しい。 できれば書きたくないけど、そうもいかない。 そんなとき心の支えになりそうなのが今回紹介する shellcheck というツール。 これはシェルスクリプトにおける Linter (リンター) で、まずい書き方をしてい…

Python: scikit-learn の Pipeline を使ってみる

機械学習では、元のデータセットに対して前処理や推論フェーズが何段にも重なることがある。 scikit-learn には、そういった何段にも重なった処理を表現しやすくするために Pipeline という機能が備わっている。 今回は、その Pipeline を使ってみることにす…

Python: pandas の DataFrame を scikit-learn で KFold するときの注意点

今回は pandas の DataFrame を scikitl-learn で交差検証しようとしてハマった話について。 だいぶ平凡なミスなんだけど、またやるとこわいので自分用にメモしておく。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.13.5 Bu…

色々と調べた末にダイヤモンドを個人輸入した話

今回は、いつもと違って技術系ではない話。 少し前のことだけど、一身上の都合によりダイヤモンドが必要になる機会があった。 正直なところ、自分自身は炭素の結晶に興味はない。 また、その資産価値についても (現時点でも) 懐疑的に見ている。 とはいえ、…

Python: LightGBM でカテゴリ変数を扱ってみる

以前このブログで LightGBM を使ってみる記事を書いた。 ただ、この記事で使っている Iris データセットにはカテゴリ変数が含まれていなかった。 blog.amedama.jp そこで、今回はマッシュルームデータセットを使ってカテゴリ変数が含まれる場合を試してみる…

Python: pandas で縦持ちのデータを横持ちにする

データ処理の世界では、データの持ち方に縦持ちと横持ちという考え方がある。 縦持ちでは、レコードに種類といったカラムを持たせてデータを追加していく。 それに対し横持ちでは種類ごとにカラムを用意した上でデータを追加する形を取る。 一般的にはデータ…

Python: pandas で DataFrame を連結したら dtype が int から float になって驚いた話

今回は pandas を使っているときに二つの DataFrame を pd.concat() で連結したところ int のカラムが float になって驚いた、という話。 先に結論から書いてしまうと、これは片方の DataFrame に存在しないカラムがあったとき、それが全て NaN 扱いになるこ…

Python: pickle を使って pandas の CSV 読み込み時間を削減する

機械学習やデータ分析に使うデータセットは CSV などの形式で提供される場合がある。 それを Python で処理するときは pandas の DataFrame 形式に変換することが多い。 このとき CSV から DataFrame に変換する処理は意外と時間がかかる。 特に大きなデータ…