CUBE SUGAR CONTAINER

技術系のこと書きます。

scikit-learn

Python: Optuna で決められた時間内で最適化する

今回は Optuna の便利な使い方について。 現行の Optuna (v0.19.0) には決められた時間内で可能な限り最適化したい、というニーズを満たす API が実装されている。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.14.6 BuildVe…

Python: Optuna の LightGBMTuner で Stepwise Tuning を試す

先日の PyData.tokyo で発表されていた Optuna の LightGBMTuner だけど v0.18.0 でリリースされたらしい。 まだ Experimental (実験的) リリースでドキュメントも整備されていないけど、動くみたいなのでコードを眺めながら試してみた。 github.com LightGB…

Python: 広義の Target Encoding と Stacking は同じもの (と解釈できる)

おそらく、既に分かっている人には「知らなかったの?」とびっくりされる系の話なんだろうけど、今さら理解したので備忘録として残しておく。 結論から書くと、目的変数を用いた特徴量生成を広義の Target Encoding と定義した場合、Target Encoding と Stac…

Python: sklearn-pandas で scikit-learn と pandas の食べ合わせを改善する

Python を使った機械学習でよく用いられるパッケージの scikit-learn は API の入出力に numpy の配列を仮定している。 そのため、データフレームの実装である pandas と一緒に使おうとすると、色々な場面で食べ合わせの悪さを感じることになる。 今回は、そ…

Python: LightGBM で学習済みモデルを自動で永続化するコールバックを書いてみた

ニューラルネットワークを実装するためのフレームワークの Keras は LightGBM と似たようなコールバックの機構を備えている。 そして、いくつか標準で用意されているコールバックがある。 keras.io そんな中に ModelCheckpoint というコールバックがあって、…

Python: LightGBM で Under-sampling + Bagging したモデルを Probability Calibration してみる

クラス間の要素数に偏りのある不均衡なデータに対する分類問題のアプローチとして、多いクラスのデータを減らすアンダーサンプリングという手法がある。 データをアンダーサンプリングしてモデルに学習させることで、評価指標が改善したりモデルの学習時間を…

Python: Under-sampling + Bagging なモデルを簡単に作れる K-Fold を実装してみた

不均衡データに対する分類問題のアプローチとして、多いクラスのデータを取り除く Under-sampling という手法がある。 さらに、複数の Under-sampling したデータを用いて、複数のモデルを用意する Bagging という手法を組み合わせることがある。 今回は、そ…

Python: PySpark でサードパーティ製のライブラリを使って分散処理する

今回は PySpark でサードパーティ製のライブラリを使って分散処理をする方法について。 サンプルとして、次のような状況を試した。 Apache Spark + Hadoop YARN で構築した分散処理用のクラスタを用いる サードパーティ製のライブラリとして scikit-learn を…

Python: LightGBM の学習率を動的に制御する

LightGBM の学習率は基本的に低い方が最終的に得られるモデルの汎化性能が高くなることが経験則として知られている。 しかしながら、学習率が低いとモデルの学習に多くのラウンド数、つまり計算量を必要とする。 そこで、今回は学習率を学習の過程において動…

Python: scikit-learn の Dummy{Classifier,Regressor} を試してみる

つい最近 scikit-learn に DummyClassifier と DummyRegressor という実装があることを知ったので試してみた。 これらの実装は、説明変数の内容は使わず、主に目的変数の内容を代わりに使って、その名の通りダミーの結果を返す。 特定のデータセットと評価指…

Python: RFE (Recursive Feature Elimination) で特徴量を選択してみる

今回は RFE (Recursive Feature Elimination) と呼ばれる手法を使って特徴量選択 (Feature Selection) してみる。 教師データの中には、モデルの性能に寄与しない特徴量が含まれている場合がある。 アルゴリズムがノイズに対して理想的にロバストであれば、…

Python: IsolationForest で教師なし学習の外れ値検知を試す

今回は教師なし学習で外れ値の検知に使える IsolationForest というアルゴリズムを試してみる。 このアルゴリズムの興味深いところは、教師データの中にある程度外れ値が含まれていても構わないという点。 つまり、アノテーションしていないデータをそのまま…

Python: scikit-learn の cross_val_predict() 関数で OOF な特徴量を作る

scikit-learn には cross_val_predict() という関数がある。 この関数は、教師データを k-Fold などで分割したときに OOF (Out of Fold) なデータの目的変数を推論する目的で使われることが多い。 なお、OOF (Out of Fold) というのは、k-Fold などでデータ…

Python: LightGBM の cv() 関数から学習済みモデルを得る

勾配ブースティング決定木を扱うフレームワークの一つである LightGBM の Python API には cv() という関数がある。 この "cv" というのは Cross Validation の略で、その名の通り LightGBM のモデルを交差検証するための関数になっている。 具体的には、こ…

Python: Adversarial Validation について

最近、Kaggle などのデータ分析コンペで使われることの多い Adversarial Validation という手法について調べたり考えていたので書いてみる。 背景 Adversarial Validation という手法は、データ分析コンペに存在する、ある課題を解決するために考案された。 …

Python: scikit-learn の cross_validate() 関数で独自の評価指標を計算する

今回は scikit-learn の cross_validate() 関数で、組み込みでは用意されていないような評価指標を計算する方法について書く。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.14.3 BuildVersion: 18D109 $ python -V Python 3…

Python: CatBoost を使ってみる

今回は CatBoost という、機械学習の勾配ブースティング決定木 (Gradient Boosting Decision Tree) というアルゴリズムを扱うためのフレームワークを試してみる。 CatBoost は、同じ勾配ブースティング決定木を扱うフレームワークの LightGBM や XGBoost と…

Python: k-NN Feature Extraction 用のライブラリ「gokinjo」を作った

表題の通り、k-NN Feature Extraction という特徴量抽出の手法に使う「gokinjo」という Python のライブラリを作った。 今回はライブラリの使い方について紹介してみる。 github.com k-NN Feature Extraction で得られる特徴量は、Otto Group Product Classi…

Python: XGBoost を使ってみる

XGBoost (eXtreme Gradient Boosting) は勾配ブースティング決定木 (Gradient Boosting Decision Tree) のアルゴリズムを実装したオープンソースのライブラリ。 最近は、同じ GBDT 系のライブラリである LightGBM にややお株を奪われつつあるものの、依然と…

Python: Hyperopt で機械学習モデルのハイパーパラメータを選ぶ

今回は、機械学習モデルのハイパーパラメータをチューニングするのに用いられる Python のフレームワークの一つとして Hyperopt を使ってみる。 このフレームワークは、機械学習コンペティションの一つである Kaggle でよく用いられるものとして知られている…

Python: 機械学習における不均衡データの問題点と対処法について

機械学習における分類問題では、扱うデータセットに含まれるラベルに偏りのあるケースがある。 これは、例えば異常検知の分野では特に顕著で、異常なデータというのは正常なデータに比べると極端に数が少ない。 正常なデータが 99.99% なのに対し異常なデー…

Python: アンサンブル学習の Voting を試す

今回は機械学習におけるアンサンブル学習の一種として Voting という手法を試してみる。 これは、複数の学習済みモデルを用意して多数決などで推論の結果を決めるという手法。 この手法を用いることで最終的なモデルの性能を上げられる可能性がある。 実装に…

Python: Optuna で機械学習モデルのハイパーパラメータを選ぶ

今回は、ハイパーパラメータを最適化するフレームワークの一つである Optuna を使ってみる。 このフレームワークは国内企業の Preferred Networks が開発の主体となっていて、ほんの数日前にオープンソースになったばかり。 ハイパーパラメータ自動最適化ツ…

Python: Annoy の近似最近傍探索 (ANN) を試す

今回は Spotify の作った近似最近傍探索 (ANN: Approximate Nearest Neighbor algorithms search) ライブラリの Annoy を試してみる。 ANN は k-NN (k-Nearest Neighbor algorithms search) の一種で、厳密な解を追い求めない代わりに高いスループットが得ら…

Python: k-NN Feature Extraction について

k-NN Feature Extraction (k-近傍法を用いた特徴量抽出) という手法があるらしい。 これは、文字通り k-NN (k-Nearest Neighbor algorithm: k-近傍法) を特徴量の抽出に応用したもの。 興味深かったので、今回は自分でも Python を使って実装してみた。 手法…

Python: 特徴量の重要度を Permutation Importance で計測する

学習させた機械学習モデルにおいて、どの特徴量がどれくらい性能に寄与しているのかを知りたい場合がある。 すごく効く特徴があれば、それについてもっと深掘りしたいし、あるいは全く効かないものがあるなら取り除くことも考えられる。 使うフレームワーク…

Python: scikit-learn の FeatureUnion を pandas の DataFrame と一緒に使う

今回は scikit-learn の FeatureUnion を pandas の DataFrame を一緒に使うときの問題点とその解決策について。 scikit-learn の FeatureUnion は、典型的には Pipeline においてバラバラに作った複数の特徴量を一つにまとめるのに使われる機能。 この Feat…

Python: scikit-learn の Pipeline 機能のキャッシュを試す

今回は scikit-learn の Pipeline に存在するキャッシュの機能を試してみる。 scikit-learn の Pipeline は、データセットの前処理・特徴量抽出からモデルの学習・推論までの一連の処理手順をひとまとめにして扱うことのできる機能。 以前に、このブログでも…

Python: scikit-learn のロジスティック回帰を使ってみる

最近、意外とロジスティック回帰が使われていることに気づいた。 もちろん世間にはもっと表現力のある分類器がたくさんあるけど、問題によってどれくらい複雑なモデルが適しているかは異なる。 それに、各特徴量がどのように働くか重みから確認したり、単純…

Python: scikit-learn の Pipeline 機能をデバッグする

今回はだいぶ小ネタ。 以前にこのブログでも記事にしたことがある scikit-learn の Pipeline 機能について。 blog.amedama.jp scikit-learn の Pipeline 機能は機械学習に必要となる複数の工程を一つのパイプラインで表現できる。 ただ、パイプラインを組ん…