CUBE SUGAR CONTAINER

技術系のこと書きます。

機械学習

Python: LightGBM の学習に使うデータ量と最適なイテレーション数の関係性について

XGBoost は同じデータセットとパラメータを用いた場合、学習に使うデータの量 (行数) と最適なイテレーション数が線形な関係にあることが経験的に知られている 1。 今回は、それが同じ GBDT (Gradient Boosting Decision Tree) の一手法である LightGBM にも…

Python: LightGBM の決定木を可視化して分岐を追ってみる

今回は、LightGBM が構築するブースターに含まれる決定木を可視化した上で、その分岐を追いかけてみよう。 その過程を通して、LightGBM の最終的な出力がどのように得られているのかを確認してみよう。 使った環境は次のとおり。 $ sw_vers ProductName: mac…

Python: TensorFlow/Keras で Word2Vec の SGNS を実装してみる

以前のエントリで、Word2Vec の CBOW (ContinuousBagOfWords) モデルを TensorFlow/Keras で実装した。 CBOW は、コンテキスト (周辺語) からターゲット (入力語) を推定する多値分類のタスクが考え方のベースになっている。 blog.amedama.jp 今回扱うのは、…

Python: TensorFlow の Dataset API を試す

ニューラルネットワークの並列計算には、今や GPU や TPU を使うのが一般的になっている。 一方で、それらのデバイスにデータを供給する部分がボトルネックにならないよう気をつけなければいけない。 具体的には、デバイスが計算している最中に、次に計算す…

Python: TensorFlow2 の自動微分を試してみる

今回は、TensorFlow2 のプリミティブな API を使って、自動微分と勾配法で計算グラフを最適化する方法が気になったので試してみた。 普段は Keras (tf.keras) を使ったミニバッチ学習をすることが多いけど、データのサイズが小さければバッチ学習で解く選択…

Python: TensorFlow/Keras で Word2Vec の CBOW を実装してみる

(2021-02-04 追記): ニューラルネットワークのアーキテクチャで、出力側の Embedding が誤って Dense になっていた部分を修正した。 Word2Vec の CBOW (Continuous Bag-of-Words) は、単語の分散表現 (Word Embedding) を得るために用いられるニューラルネッ…

Python: 正の相互情報量 (PPMI) と特異値分解 (SVD) を使った単語の分散表現

(2021-02-02 追記): 共起行列の計算を NumPy の Integer array indexing を使った実装にした オライリーの「ゼロから作るDeep Learning ❷ ――自然言語処理編」を読んでいる。 この中に、カウントベースで計算する初歩的な単語の分散表現が紹介されていて、な…

Python: TensorFlow/Keras で Entity Embedding を試してみる

ニューラルネットワークでカテゴリ変数を扱う方法としては One-Hot エンコーディングがある。 しかし、One-Hot エンコーディングでは特徴量のカーディナリティが高いと扱う次元数が大きくなる。 そこで、今回紹介する Entity Embedding を使うと、ラベルエン…

Python: LightGBM の cv() 関数と SHAP を使ってみる

以前、このブログでは機械学習モデルの解釈可能性を向上させる手法として SHAP を扱った。 blog.amedama.jp 上記のエントリでは、LightGBM の train() 関数と共に、モデルの学習に使ったデータを解釈していた。 今度は cv() 関数を使って、Out-of-Fold なデ…

Python: GPU を使う主要なパッケージで CUDA が有効か確かめる方法について

CUDA を利用する Python のパッケージは、多くの場合それ自体のバージョンだけでなく対応している CUDA Toolkit や cuDNN のバージョンまで気にする必要がある。 なんだか環境やコンテナイメージを作るたびに確認する方法や互換性について調べている気がする…

Python: 主成分分析を重み付き和への分解と解釈した場合の可視化

読んでいる本の中に、主成分分析 (Principal Component Analysis; PCA) はデータを重み付き和に分解していると解釈することもできる、という記述があった。 なるほどーと思ったので、今回はそれについて試してみた。 使った環境は次のとおり。 $ sw_vers Pro…

Python: MLflow Projects を使ってみる

MLflow は MLOps に関連した OSS のひとつ。 いくつかのコンポーネントに分かれていて、それぞれを必要に応じて独立して使うことができる。 今回は、その中でも MLflow Projects というコンポーネントを使ってみる。 MLflow Projects を使うと、なるべく環境…

Python: LIME (Local Interpretable Model Explanations) を LightGBM と使ってみる

今回は、機械学習モデルの解釈可能性を向上させる手法のひとつである LIME (Local Interpretable Model Explanations) を LightGBM と共に使ってみる。 LIME は、大局的には非線形なモデルを、局所的に線形なモデルを使って近似することで、予測の解釈を試み…

Python: MLflow Models の Custom Python Models でデータを Pickle 以外に永続化する

以前、このブログでは MLflow Models の使い方について以下のようなエントリを書いた。 この中では、Custom Python Models を作るときに、データを Python の Pickle 形式のファイルとして永続化していた。 今回は、それ以外のファイルにデータを永続化する…

Python: MLflow Models を使ってみる

MLflow は MLOps に関連した OSS のひとつ。 いくつかのコンポーネントに分かれていて、それぞれを必要に応じて独立して使うことができる。 その中でも、今回扱う MLflow Models は主に学習済みモデルやパイプラインの取り回しに関するコンポーネント。 MLfl…

Python: LightGBM の cv() 関数から得られるモデルの特徴量の重要度を可視化してみる

今回は LightGBM の cv() 関数から得られる複数の学習済み Booster から特徴量の重要度を取り出して可視化してみる。 それぞれの Booster 毎のバラつきなどから各特徴量の傾向などが確認できるかもしれない。 使った環境は次のとおり。 $ sw_vers ProductNam…

Python: CatBoost を GPU で学習させる

勾配ブースティング決定木を扱うフレームワークの CatBoost は、GPU を使った学習ができる。 GPU を使うと、CatBoost の特徴的な決定木の作り方 (Symmetric Tree) も相まって、学習速度の向上が見込める場合があるようだ。 今回は、それを試してみる。 使っ…

Python: SHAP (SHapley Additive exPlanations) を LightGBM と使ってみる

SHAP は協力ゲーム理論にもとづいて機械学習モデルを解釈する手法と、その実装を指している。 今回は、あまり理論の部分には踏み込むことなく、使い方を中心として書いていく。 使った環境は次のとおり。 $ sw_vers ProductName: Mac OS X ProductVersion: 1…

Python: LightGBM の cv() 関数の実装について

今回は LightGBM の cv() 関数について書いてみる。 LightGBM の cv() 関数は、一般的にはモデルの性能を評価する交差検証に使われる。 一方で、この関数から取り出した学習済みモデルを推論にまで使うユーザもいる。 今回は、その理由やメリットとデメリッ…

Python: Null Importance を使った特徴量選択について

今回は特徴量選択 (Feature Selection) の手法のひとつとして使われることのある Null Importance を試してみる。 Null Importance というのは、目的変数をシャッフルして意味がなくなった状態で学習させたモデルから得られる特徴量の重要度を指す。 では、…

Python: UMAP を使ってみる

UMAP (Uniform Manifold Approximation and Projection) は次元削減手法のひとつ。 似た手法としては t-SNE (t-distributed Stochastic Neighbor Embedding) があるけど、それよりも高速らしい。 公式のベンチマークが以下で紹介されていて、t-SNE に比べる…

Python: XGBoost の cv() 関数から学習済みモデルを取り出す

今回は、以下のエントリを XGBoost で焼き直したもの。 つまり、XGBoost でも cv() 関数から学習済みモデルを取り出して Fold Averaging してみようという話。 blog.amedama.jp 使った環境は次のとおり。 $ sw_vers ProductName: Mac OS X ProductVersion: 1…

Python: mlflow.start_run(nested=True) は使い方に注意しよう

今回は MLflow Tracking のすごーく細かい話。 ソースコードを読んでいて、ハマる人もいるかもなと思ったので書いておく。 結論から先に書くと、MLflow Tracking には次のような注意点がある。 MLflow Tracking で標準的に使う API はマルチスレッドで Run …

Python: MLflow Tracking を使ってみる

MLflow は MLOps に関連した OSS のひとつ。 いくつかのコンポーネントに分かれていて、それぞれを必要に応じて独立して使うことができる。 今回は、その中でも実験の管理と可視化を司る MLflow Tracking を試してみることにした。 機械学習のプロジェクトで…

Python: Optuna の LightGBMTunerCV から学習済みモデルを取り出す

Optuna v1.5.0 では、LightGBM インテグレーションの一環として LightGBMTunerCV という API が追加された。 これは LightGBM の cv() 関数を Step-wise algorithm で最適化するラッパーになっている。 つまり、重要ないくつかのパラメータを Step-wise で調…

Python: Keras でカスタムメトリックを扱う

今回は Keras に組み込みで用意されていない独自の評価指標 (カスタムメトリック) を扱う方法について書いてみる。 なお、Keras でカスタムメトリックを定義する方法については、以下の公式ドキュメントに記載がある。 keras.io 使った環境は次のとおり。 Ke…

Python: gensim の FAST_VERSION 定数の意味について

Python の gensim には自然言語処理 (NLP) に関する様々な実装がある。 そして、その中のいくつかのモジュールには FAST_VERSION という定数が定義されている。 この定数は環境によって異なる値を取って、値によってパフォーマンスが大きく異なる場合がある…

Python: gensim を使った Word Embedding の内省的評価について

以下の書籍では、Word Embedding の評価方法として内省的評価 (intrinsic evaluation) と外省的評価 (extrinsic evaluation) という 2 つのやり方が紹介されている。 内省的評価では、人間が判断した単語間の類似度や、単語の持つ意味を使ったアナロジーを、…

Python: 学習済み機械学習モデルの特性を PDP で把握する

機械学習を用いるタスクで、モデルの解釈可能性 (Interpretability) が重要となる場面がある。 今回は、モデルの解釈可能性を得る手法のひとつとして PDP (Partial Dependence Plot: 部分従属プロット) を扱ってみる。 PDP を使うと、モデルにおいて説明変数…

Word2Vec 形式のファイルフォーマットについて

Word2Vec では、Skip-gram や CBOW といったタスクを学習させたニューラルネットワークの隠れ層の重みを使って単語を特徴ベクトルにエンコードする。 つまり、Word2Vec で成果物として得られるのは、コーパスの各単語に対応する特徴ベクトルになる。 今回は…