CUBE SUGAR CONTAINER

技術系のこと書きます。

pandas

IPv4 アドレスの値段

今回は IPv4 アドレスの値段や、その売買に関する動向について調べてみた。 TL; DR IPv4 アドレスは売買できる オークションにおける IPv4 アドレスの売買単価は値上がり傾向にある 2018 年 11 月 1 日現在、IPv4 アドレス一つあたり 17 ~ 20 USD ほどで取引…

Python: pandas-profiling でデータセットの概要を確認する

今回は pandas-profiling というパッケージを使ってみる。 このパッケージを使うと pandas の DataFrame に含まれる各次元の基本的な統計量や相関係数などを一度に確認できる。 最初にデータセットのサマリーを確認できると、その後の EDA (Exploratory Data…

Python: scikit-learn の FeatureUnion を pandas の DataFrame と一緒に使う

今回は scikit-learn の FeatureUnion を pandas の DataFrame を一緒に使うときの問題点とその解決策について。 scikit-learn の FeatureUnion は、典型的には Pipeline においてバラバラに作った複数の特徴量を一つにまとめるのに使われる機能。 この Feat…

Python: scikit-learn の Pipeline 機能をデバッグする

今回はだいぶ小ネタ。 以前にこのブログでも記事にしたことがある scikit-learn の Pipeline 機能について。 blog.amedama.jp scikit-learn の Pipeline 機能は機械学習に必要となる複数の工程を一つのパイプラインで表現できる。 ただ、パイプラインを組ん…

Python: pandas と Google BigQuery を連携させる

ぶっちゃけ pandas は大規模なデータセットを扱うのが苦手だ。 だいたい一桁 GB なら我慢と工夫で何とかなるけど、二桁 GB を超えると現実的な処理時間で捌けなくなってくる。 そこで、今回は pandas を Google BigQuery と連携させることで重たい処理をオフ…

Python: pandas の DataFrame, Series, Index を拡張する

Python でデータ分析をするときに、ほぼ必ずといって良いほど使われるパッケージとして pandas がある。 そのままでも便利な pandas だけど、代表的なオブジェクトの DataFrame, Series, Index には実は独自の拡張を加えることもできる。 これがなかなか面白…

Python: tqdm で処理の進捗状況をプログレスバーとして表示する

最近は Python がデータ分析や機械学習の分野でも使われるようになってきた。 その影響もあって REPL や Jupyter Notebook 上でインタラクティブに作業することも増えたように感じる。 そんなとき、重い処理を走らせると一体いつ終わるのか分からず途方に暮…

Python: pandas の永続化フォーマットについて調べた

以前、このブログでは pandas の DataFrame を Pickle として保存することで読み込み速度を上げる、というテクニックを紹介した。 blog.amedama.jp 実は pandas がサポートしている永続化方式は Pickle 以外にもある。 今回は、その中でも代表的な以下の永続…

Python: pandas の DataFrame を scikit-learn で KFold するときの注意点

今回は pandas の DataFrame を scikitl-learn で交差検証しようとしてハマった話について。 だいぶ平凡なミスなんだけど、またやるとこわいので自分用にメモしておく。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.13.5 Bu…

Python: LightGBM でカテゴリ変数を扱ってみる

以前このブログで LightGBM を使ってみる記事を書いた。 ただ、この記事で使っている Iris データセットにはカテゴリ変数が含まれていなかった。 blog.amedama.jp そこで、今回はマッシュルームデータセットを使ってカテゴリ変数が含まれる場合を試してみる…

Python: pandas で縦持ちのデータを横持ちにする

データ処理の世界では、データの持ち方に縦持ちと横持ちという考え方がある。 縦持ちでは、レコードに種類といったカラムを持たせてデータを追加していく。 それに対し横持ちでは種類ごとにカラムを用意した上でデータを追加する形を取る。 一般的にはデータ…

Python: pandas で DataFrame を連結したら dtype が int から float になって驚いた話

今回は pandas を使っているときに二つの DataFrame を pd.concat() で連結したところ int のカラムが float になって驚いた、という話。 先に結論から書いてしまうと、これは片方の DataFrame に存在しないカラムがあったとき、それが全て NaN 扱いになるこ…

Python: pickle を使って pandas の CSV 読み込み時間を削減する

機械学習やデータ分析に使うデータセットは CSV などの形式で提供される場合がある。 それを Python で処理するときは pandas の DataFrame 形式に変換することが多い。 このとき CSV から DataFrame に変換する処理は意外と時間がかかる。 特に大きなデータ…

Python: pandas の DataFrameGroupBy#agg() には関数も渡せる

今回は pandas で DataFrame#groupby() したときに得られるオブジェクト DataFrameGroupBy が持つメソッド agg() について。 これまであんまり使ってこなかったけど、関数が渡せることを知って色々と便利に使えそうだなと感じた。 ちょっと前置きが長くなる…

Python: pandas でダミー変数を生成する

今回は pandas を使ってダミー変数を生成する方法について書く。 ダミー変数というのは、例えば国籍や性別といった名義尺度の説明変数を数値に変換する手法のこと。 名義尺度は順序関係を持たないので、単純に取りうる値に対して連番を振るようなやり方では…

Python: pandas の DataFrame から不要なカラムを削除する

今回は pandas の DataFrame オブジェクトから不要なカラムを取り除く方法について書く。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.13.3 BuildVersion: 17D102 $ python -V Python 3.6.4 下準備 まずは環境に pandas を…

Python: pandas で欠損値の有無を調べる

今回はかなり小ネタだけど pandas の DataFrame オブジェクト内に欠損値を含むカラムがあるか調べる方法について。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.13.3 BuildVersion: 17D102 $ python -V Python 3.6.4 $ pip …

Python: pandas で対応関係を渡して値を変換する

例えばデータセットの中のカラムが文字列型なんかで入っていると、それを数値に直したくなることはよくあると思う。 今回はそれを pandas でやる方法について書く。 結論から先に書くと Series オブジェクトにある map() メソッドを使うと上手くいく。 使っ…

Python: pandas で特定の値がいくつあるか数える

今回は pandas で特定の値がいくつ数える方法について。 結論から先に書いてしまうと value_counts() という専用のメソッドがあるよ、という話。 使った環境は次の通り。 $ python -V Python 3.6.4 $ pip list --format=columns | grep -i pandas pandas 0.2…

Python: pandas でカラムの型を変換する

pandas はデータを読み込むとき、よきに計らってカラムに型を付与してくれる。 ただ、その内容が意図しない場合もある。 そんなとき、どうやってカラムの型を直すか、ということについて。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductV…

Python: pandas で数の少ない項目を「その他」にまとめる

pandas で集計した内容をグラフにするとき、数の少ない項目がたくさんあるとごちゃっとしてしまう。 今回は、そんな数の少ない項目を「その他」としてまとめる方法について。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.12…