pandas
これまで scikit-learn が提供する TransformerMixin の実装 1 は、出力に NumPy 配列を仮定していた。 そのため、pandas の DataFrame を入力しても出力は NumPy 配列になってしまい、使い勝手が良くないという問題があった。 この問題は、特に Pipeline や…
Python の EDA 用フレームワークとして有名な pandas-profiling は ydata-profiling に名前が変更された。 まだ意外と知られていないようなので、今回はそれについて書いてみる。 使った環境は次のとおり。 $ sw_vers ProductName: macOS ProductVersion: 13…
Pandas の 2 系から、新たにデータ型のバックエンドという考え方が導入された。 これは、端的にいうと DataFrame のデータをどのような形式で持つかを表している。 たとえば Pandas 2.0.0 の時点では、次の 3 つからバックエンドを選ぶことができる。 NumPy …
Polars の DataFrame は to_pandas() メソッドを使うことで Pandas の DataFrame に変換できる。 このとき、デフォルトではメモリのコピーが生じる。 pola-rs.github.io ただし、オプションとして use_pyarrow_extension_array=True を渡すとゼロコピーで変…
最近は Polars が気に入っていて、主にプライベートで使っている。 ただ、エコシステムという観点では Pandas に比べて発展途上の段階にあると思う。 そこで、今回は発展の一助として「Shirokumas」というライブラリを作ってみた。 github.com どんなライブ…
データ分析コンペなどでよく利用される Target Encoding という特徴量抽出 (Feature Extraction) の手法がある。 これは、ターゲット (目的変数) の情報に基づいて、カテゴリ変数ごとの期待値を説明変数として利用するもの。 Target Encoding には、いくつか…
まったく知らなかったんだけど、Pandas はカラムの型として NumPy の float16 (16 ビット浮動小数点型) をサポートしていない。 これは、以下の Issue で説明されている。 どうやら、プラットフォームによっては float16 を利用できないため対応が難しいらし…
ふと、集約特徴量を作るための scikit-learn Transformer 互換な実装を巷であまり見かけないなと思った。 そこで、自作しているものを公開してみる。 使った環境は次のとおり。 $ sw_vers ProductName: macOS ProductVersion: 12.4 BuildVersion: 21F79 $ py…
Streamlit は、ざっくり言うと主にデータサイエンス領域において WebUI 付きのアプリケーションを手早く作るためのソフトウェア。 使い所としては、ひとまず動くものを見せたかったり、少人数で試しに使うレベルのプロトタイプを作るフェーズに適していると…
以前から移動平均 (MA: Moving Average) という手法自体は知っていたけど、中心化移動平均 (CMA: Centered Moving Average) というものがあることは知らなかった。 一般的な移動平均である後方移動平均は、データの対応関係が原系列に対して遅れてしまう。 …
一般的に、時系列データを扱うタスクでは過去のデータを使って未来のデータを予測することになる。 そのため、交差検証するときも過去のデータを使ってモデルを学習させた上で未来のデータを使って検証しなければいけない。 もし、未来のデータがモデルの学…
今回は featuretools というパッケージを用いた総当り特徴量エンジニアリング (brute force feature engineering) について書いてみる。 総当り特徴量エンジニアリングは、実際に効くか効かないかに関係なく、考えられるさまざまな処理を片っ端から説明変数…
R には、データフレームを関数型プログラミングっぽく操作できるようになる dplyr というパッケージがある。 今回紹介する dfply は、その API を Python に移植したもの。 実用性云々は別としても、なかなか面白い作りで参考になった。 使った環境は次の通…
先日の PyData.tokyo で発表されていた Optuna の LightGBMTuner だけど v0.18.0 でリリースされたらしい。 まだ Experimental (実験的) リリースでドキュメントも整備されていないけど、動くみたいなのでコードを眺めながら試してみた。 github.com LightGB…
おそらく、既に分かっている人には「知らなかったの?」とびっくりされる系の話なんだろうけど、今さら理解したので備忘録として残しておく。 結論から書くと、目的変数を用いた特徴量生成を広義の Target Encoding と定義した場合、Target Encoding と Stac…
データ分析コンペでは Target Encoding という特徴量抽出の手法が用いられることがある。 Target Encoding では、一般的に説明変数に含まれるカテゴリ変数と目的変数を元にして特徴量を作り出す。 データによっては強力な反面、目的変数をエンコードに用いる…
Python を使った機械学習でよく用いられるパッケージの scikit-learn は API の入出力に numpy の配列を仮定している。 そのため、データフレームの実装である pandas と一緒に使おうとすると、色々な場面で食べ合わせの悪さを感じることになる。 今回は、そ…
pandas の DataFrame は明示的にデータ型を指定しないと整数型や浮動小数点型のカラムを 64 ビットで表現する。 pandas の DataFrame は、表現に使うビット数が大きいと、メモリ上のオブジェクトのサイズも当然ながら大きくなる。 そこで、今回は DataFrame …
pandas を使ってデータ分析などをしていると、自分が意図した通りのデータになっているか、たまに確認することになると思う。 確認する方法としてはグラフにプロットしてみたり、あるいは assert 文を使って shape などを確認することが考えられる。 今回紹…
scikit-learn には cross_val_predict() という関数がある。 この関数は、教師データを k-Fold などで分割したときに OOF (Out of Fold) なデータの目的変数を推論する目的で使われることが多い。 なお、OOF (Out of Fold) というのは、k-Fold などでデータ…
今回は、複数カラムの特徴量を一度に作りたいなーっていう、たまに思うやつを書く。 結論から先に書いてしまうと、返り値を Series にしてやれば良い。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.14.3 BuildVersion: 18D1…
取り扱うデータをサンプリングする機会は意外と多い。 ユースケースとしては、例えばデータが多すぎて扱いにくい場合や、グループごとに件数の偏りのある場合が挙げられる。 今回は pandas を使ってグループごとに特定の件数をサンプリングする方法について…
今回は IPv4 アドレスの値段や、その売買に関する動向について調べてみた。 TL; DR IPv4 アドレスは売買できる オークションにおける IPv4 アドレスの売買単価は値上がり傾向にある 2018 年 11 月 1 日現在、IPv4 アドレス一つあたり 17 ~ 20 USD ほどで取引…
今回は pandas-profiling というパッケージを使ってみる。 このパッケージを使うと pandas の DataFrame に含まれる各次元の基本的な統計量や相関係数などを一度に確認できる。 最初にデータセットのサマリーを確認できると、その後の EDA (Exploratory Data…
今回は scikit-learn の FeatureUnion を pandas の DataFrame を一緒に使うときの問題点とその解決策について。 scikit-learn の FeatureUnion は、典型的には Pipeline においてバラバラに作った複数の特徴量を一つにまとめるのに使われる機能。 この Feat…
今回はだいぶ小ネタ。 以前にこのブログでも記事にしたことがある scikit-learn の Pipeline 機能について。 blog.amedama.jp scikit-learn の Pipeline 機能は機械学習に必要となる複数の工程を一つのパイプラインで表現できる。 ただ、パイプラインを組ん…
ぶっちゃけ pandas は大規模なデータセットを扱うのが苦手だ。 だいたい一桁 GB なら我慢と工夫で何とかなるけど、二桁 GB を超えると現実的な処理時間で捌けなくなってくる。 そこで、今回は pandas を Google BigQuery と連携させることで重たい処理をオフ…
Python でデータ分析をするときに、ほぼ必ずといって良いほど使われるパッケージとして pandas がある。 そのままでも便利な pandas だけど、代表的なオブジェクトの DataFrame, Series, Index には実は独自の拡張を加えることもできる。 これがなかなか面白…
最近は Python がデータ分析や機械学習の分野でも使われるようになってきた。 その影響もあって REPL や Jupyter Notebook 上でインタラクティブに作業することも増えたように感じる。 そんなとき、重い処理を走らせると一体いつ終わるのか分からず途方に暮…
以前、このブログでは pandas の DataFrame を Pickle として保存することで読み込み速度を上げる、というテクニックを紹介した。 blog.amedama.jp 実は pandas がサポートしている永続化方式は Pickle 以外にもある。 今回は、その中でも代表的な以下の永続…