CatBoost
今回は GBDT (Gradient Boosting Decision Tree) フレームワークのひとつである CatBoost について、いくつかの環境で同一のソースコードを使って学習にかかる時間を比較してみた。 きっかけは、最近入手した Apple M2 Pro を搭載した Mac mini が、どれくら…
勾配ブースティング決定木を扱うフレームワークの CatBoost は、GPU を使った学習ができる。 GPU を使うと、CatBoost の特徴的な決定木の作り方 (Symmetric Tree) も相まって、学習速度の向上が見込める場合があるようだ。 今回は、それを試してみる。 使っ…
今回は CatBoost という、機械学習の勾配ブースティング決定木 (Gradient Boosting Decision Tree) というアルゴリズムを扱うためのフレームワークを試してみる。 CatBoost は、同じ勾配ブースティング決定木を扱うフレームワークの LightGBM や XGBoost と…