CUBE SUGAR CONTAINER

技術系のこと書きます。

Mac OS X

Python: Null Importance を使った特徴量選択について

今回は特徴量選択 (Feature Selection) の手法のひとつとして使われることのある Null Importance を試してみる。 Null Importance というのは、目的変数をシャッフルして意味がなくなった状態で学習させたモデルから得られる特徴量の重要度を指す。 では、…

Python: 画像データをフーリエ変換して周波数領域で扱ってみる

フーリエ変換は音声データに対して用いられることが多い手法だけど、画像データにも応用が効く。 音声データの場合、フーリエ変換を使うことで時間領域の情報を周波数領域の情報に直せる。 それに対し、画像データでは空間領域の情報を周波数領域の情報に直…

Python: UMAP を使ってみる

UMAP (Uniform Manifold Approximation and Projection) は次元削減手法のひとつ。 似た手法としては t-SNE (t-distributed Stochastic Neighbor Embedding) があるけど、それよりも高速らしい。 公式のベンチマークが以下で紹介されていて、t-SNE に比べる…

Python: XGBoost の cv() 関数から学習済みモデルを取り出す

今回は、以下のエントリを XGBoost で焼き直したもの。 つまり、XGBoost でも cv() 関数から学習済みモデルを取り出して Fold Averaging してみようという話。 blog.amedama.jp 使った環境は次のとおり。 $ sw_vers ProductName: Mac OS X ProductVersion: 1…

kubectl の複数の設定ファイルを一つにマージする

何度も調べることになりそうなのでメモしておく。 kubectl で複数の設定ファイルがあるときに、ひとつにまとめる方法について。 使った環境は次のとおり。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.14.6 BuildVersion: 18G5033 $ kubectl versio…

Python: MLflow Tracking を使ってみる

MLflow は MLOps に関連した OSS のひとつ。 いくつかのコンポーネントに分かれていて、それぞれを必要に応じて独立して使うことができる。 今回は、その中でも実験の管理と可視化を司る MLflow Tracking を試してみることにした。 機械学習のプロジェクトで…

Python: Optuna の LightGBMTunerCV から学習済みモデルを取り出す

Optuna v1.5.0 では、LightGBM インテグレーションの一環として LightGBMTunerCV という API が追加された。 これは LightGBM の cv() 関数を Step-wise algorithm で最適化するラッパーになっている。 つまり、重要ないくつかのパラメータを Step-wise で調…

kind (Kubernetes IN Docker) を使ってみる

今回は Kubernetes の開発で使われている公式ツールの kind を使ってみる。 このツールを使うと Docker のコンテナを使って Kubernetes のクラスタが素早く簡単に構築できる。 OpenStack でいうところの DevStack に相当するものかな。 使った環境は次のとお…

Python: gensim の FAST_VERSION 定数の意味について

Python の gensim には自然言語処理 (NLP) に関する様々な実装がある。 そして、その中のいくつかのモジュールには FAST_VERSION という定数が定義されている。 この定数は環境によって異なる値を取って、値によってパフォーマンスが大きく異なる場合がある…

Word2Vec 形式のファイルフォーマットについて

Word2Vec では、Skip-gram や CBOW といったタスクを学習させたニューラルネットワークの隠れ層の重みを使って単語を特徴ベクトルにエンコードする。 つまり、Word2Vec で成果物として得られるのは、コーパスの各単語に対応する特徴ベクトルになる。 今回は…

Python: statsmodels で時系列データを基本成分に分解する

時系列データを扱うとき、原系列が傾向変動・季節変動・不規則変動という基本成分の合成で成り立っていると捉えることがある。 傾向変動は中長期的な増加・減少といった変化であり、季節変動は例えば 1 ヶ月や 1 年といった周期的な変化を指している。 不規…

Python: 時系列データの交差検証と TimeSeriesSplit の改良について

一般的に、時系列データを扱うタスクでは過去のデータを使って未来のデータを予測することになる。 そのため、交差検証するときも過去のデータを使ってモデルを学習させた上で未来のデータを使って検証しなければいけない。 もし、未来のデータがモデルの学…

Python: Luigi のパラメータ爆発問題について

Luigi は、Python を使って実装された、バッチ処理のパイプラインを扱うためのフレームワーク。 Luigi でパイプラインを定義するときは、基本的には個別のタスクを依存関係でつないでいくことになる。 このとき、扱う処理によってはパイプラインは長大になる…

Python: Luigi のイベントハンドラを試してみる

今回は、Luigi でタスクの開始や成功・失敗などのときに発火するイベントハンドラを扱ってみる。 なお、Luigi はバッチ処理などのパイプラインを組むのに使われるソフトウェアのこと。 基本的な使い方については以下を参照してほしい。 blog.amedama.jp 使っ…

Python: Optuna を使って QWK の閾値を最適化してみる

最近、Twitter のタイムラインで QWK (Quadratic Weighted Kappa: 二次の重み付きカッパ係数) の最適化が話題になっていたので個人的に調べていた。 QWK は順序つきの多値分類問題を評価するための指標で、予測を大きく外すほど大きなペナルティが与えられる…

VirtualBox で仮想マシンが入れ子 (Nested Virtualization) できるようになった

先日リリースされた VirtualBox 6.0 からは AMD の CPU で、6.1 からは Intel の CPU で Nested Virtualization がサポートされた。 Nested Virtualization というのは、仮想マシンの中に仮想マシンを入れ子に作ることを指す。 ようするに、仮想マシンをマト…

Python: Optuna で決められた時間内で最適化する

今回は Optuna の便利な使い方について。 現行の Optuna (v0.19.0) には決められた時間内で可能な限り最適化したい、というニーズを満たす API が実装されている。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.14.6 BuildVe…

Python: featuretools ではじめる総当り特徴量エンジニアリング

今回は featuretools というパッケージを用いた総当り特徴量エンジニアリング (brute force feature engineering) について書いてみる。 総当り特徴量エンジニアリングは、実際に効くか効かないかに関係なく、考えられるさまざまな処理を片っ端から説明変数…

Python: 未処理の例外が上がったときの処理をオーバーライドする

今回はだいぶダーティーな手法に関する話。 未処理の例外が上がったときに走るデフォルトの処理をオーバーライドしてしまう方法について。 あらかじめ断っておくと、どうしても必要でない限り、こんなことはやらない方が望ましい。 とはいえ、これによって助…

Python: 関数合成できる API を作ってみる

今回は普通の Python では満足できなくなってしまった人向けの話題。 dfply や pipe といった一部のパッケージで採用されているパイプ処理や関数合成できる API を作る一つのやり方について。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X Produ…

Python: dfply を使ってみる

R には、データフレームを関数型プログラミングっぽく操作できるようになる dplyr というパッケージがある。 今回紹介する dfply は、その API を Python に移植したもの。 実用性云々は別としても、なかなか面白い作りで参考になった。 使った環境は次の通…

Python: Optuna の LightGBMTuner で Stepwise Tuning を試す

先日の PyData.tokyo で発表されていた Optuna の LightGBMTuner だけど v0.18.0 でリリースされたらしい。 まだ Experimental (実験的) リリースでドキュメントも整備されていないけど、動くみたいなのでコードを眺めながら試してみた。 github.com LightGB…

Python: 広義の Target Encoding と Stacking は同じもの (と解釈できる)

おそらく、既に分かっている人には「知らなかったの?」とびっくりされる系の話なんだろうけど、今さら理解したので備忘録として残しておく。 結論から書くと、目的変数を用いた特徴量生成を広義の Target Encoding と定義した場合、Target Encoding と Stac…

trap コマンドを使ったシェルスクリプトのエラーハンドリング

今回は、シェルの組み込みコマンドの trap を使ったシェルスクリプトのエラーハンドリングについて。 シェルの組み込みコマンド trap は、特定のシグナルやコマンドの返り値が非ゼロとなったときに実行する処理を指定できる。 trap コマンドは、次のようにし…

Python: sklearn-pandas で scikit-learn と pandas の食べ合わせを改善する

Python を使った機械学習でよく用いられるパッケージの scikit-learn は API の入出力に numpy の配列を仮定している。 そのため、データフレームの実装である pandas と一緒に使おうとすると、色々な場面で食べ合わせの悪さを感じることになる。 今回は、そ…

Re:VIEW で書いた本に記載するコマンドライン操作をテストする方法について考えた

今回は、Re:VIEW で記述している技術書に記載するコマンドライン操作がちゃんと動くか確認する方法について考えてみた話。 このエントリでは、コマンドライン操作を記述しているテキストファイルをシェルスクリプトに変換して実行する方法を提案する。 なお…

macOS (x86/x86-64) のシステムコールをアセンブラから呼んでみる

今回は、表題の通り x86/x86-64 の macOS でシステムコールをアセンブラから呼んでみる。 ただし、前回のエントリで FreeBSD についても同じようにシステムコールをアセンブラから呼んだ。 macOS は BSD を先祖に持つ XNU カーネルで動いている。 そのため、…

python-livereload で Re:VIEW の執筆を捗らせてみる

普段、Sphinx でドキュメントを書くときは sphinx-autobuild というツールを使っている。 このツールを使うと、編集している内容をブラウザからリアルタイムで確認できるようになる。 blog.amedama.jp 今回は、上記のような環境が Re:VIEW でも欲しくて pyth…

デジタル出版システム Re:VIEW を使ってみる

書籍の執筆環境として、最近は Re:VIEW の評判が良いので試してみることにした。 しばらく使い込んでみて良さそうだったら、既存の Sphinx の環境から移行するのもありかもしれない。 もちろん Sphinx もドキュメントを書くには良いツールなんだけど、はじめ…

色々な Unix 系 OS の crypt(3) について調べたら面白かった話

今回は、色々な Unix 系 OS の crypt(3) について調べたら、過去の経緯などが分かって面白かったという話について。 crypt(3) というのは、標準 C ライブラリの libc ないし libcrypt で実装されている関数のこと。 調査した Unix 系 OS というのは、具体的…