統計
最近、意外とロジスティック回帰が使われていることに気づいた。 もちろん世間にはもっと表現力のある分類器がたくさんあるけど、問題によってどれくらい複雑なモデルが適しているかは異なる。 それに、各特徴量がどのように働くか重みから確認したり、単純…
今回はだいぶ小ネタ。 以前にこのブログでも記事にしたことがある scikit-learn の Pipeline 機能について。 blog.amedama.jp scikit-learn の Pipeline 機能は機械学習に必要となる複数の工程を一つのパイプラインで表現できる。 ただ、パイプラインを組ん…
K-分割交差検証 (K-Fold CV) を用いた機械学習モデルの評価では、元のデータセットを K 個のサブセットに分割する。 そして、分割したサブセットの一つを検証用に、残りの K - 1 個を学習用に用いる。 上記の作業で、元のデータセットを K 個のサブセットに…
機械学習モデルにおいて、人間によるチューニングが必要なパラメータをハイパーパラメータと呼ぶ。 ハイパーパラメータをチューニングするやり方は色々とある。 例えば、良さそうなパラメータの組み合わせを全て試すグリッドサーチや、無作為に試すランダム…
Python でデータ分析をするときに、ほぼ必ずといって良いほど使われるパッケージとして pandas がある。 そのままでも便利な pandas だけど、代表的なオブジェクトの DataFrame, Series, Index には実は独自の拡張を加えることもできる。 これがなかなか面白…
今回は、ハイパーパラメータ選びを含む機械学習モデルの交差検証について書いてみる。 このとき、交差検証のやり方がまずいと汎化性能を本来よりも高く見積もってしまう恐れがある。 汎化性能というのは、未知のデータに対処する能力のことを指す。 ようする…
データ処理の世界では、データの持ち方に縦持ちと横持ちという考え方がある。 縦持ちでは、レコードに種類といったカラムを持たせてデータを追加していく。 それに対し横持ちでは種類ごとにカラムを用意した上でデータを追加する形を取る。 一般的にはデータ…
今回は pandas を使っているときに二つの DataFrame を pd.concat() で連結したところ int のカラムが float になって驚いた、という話。 先に結論から書いてしまうと、これは片方の DataFrame に存在しないカラムがあったとき、それが全て NaN 扱いになるこ…
機械学習やデータ分析に使うデータセットは CSV などの形式で提供される場合がある。 それを Python で処理するときは pandas の DataFrame 形式に変換することが多い。 このとき CSV から DataFrame に変換する処理は意外と時間がかかる。 特に大きなデータ…
今回は Apache Hive の Vectorization 機能を使ってパフォーマンスが向上するか試してみる。 Apache Hive では、通常 HDFS に保存されたデータを一行ずつ処理する。 それに対し Vectorization 機能を使うと、状況は限られるものの複数行をまとめて処理できる…
今回は、機械学習において分類問題のモデルを評価するときに使われる色々な指標について扱う。 一般的な評価指標としては正確度 (Accuracy) が使われることが多いけど、これには問題も多い。 また、それぞれの指標は特徴が異なることから、対象とする問題ご…
今回は多様体学習を使ってデータの次元を縮約する方法について。 これはデータの前処理として、主に二つの目的で使われる。 一つ目は、次元を縮約することで二次元や三次元の形でデータを可視化できるようにするため。 もう一つは、次元を縮約した結果を教師…
データエンジニアリングの分野では、分類精度などを高めるためにデータの前処理が重要となってくる。 今回は、そんな前処理の中でも無名数化と呼ばれる手法について見ていく。 無名数化というのは、具体的にはデータに含まれる次元の単位をなくす処理のこと…
以前、このブログでは共分散や相関係数について扱ったことがある。 共分散や相関係数というのは、二つの変数間に線形な関係があるかを調べる方法だった。 blog.amedama.jp しかし、実はただの相関係数では「第三の変数」からの影響を受けてしまう場合がある…
主成分分析 (PCA) は、主にデータ分析や統計の世界で使われる道具の一つ。 データセットに含まれる次元が多いと、データ分析をするにせよ機械学習をするにせよ分かりにくさが増える。 そんなとき、主成分分析を使えば取り扱う必要のある次元を圧縮 (削減) で…
k 近傍法 (k-Nearest Neighbor algorithm) というのは、機械学習において教師あり学習で分類問題を解くためのアルゴリズム。 教師あり学習における分類問題というのは、あらかじめ教師信号として特徴ベクトルと正解ラベルが与えられるものをいう。 その教師…
先日、当面の目標にしていた統計検定2級に合格することができた。 今回は、受験に関する諸々について書いてみることにする。 受験のきっかけ 以前から、データ分析や機械学習に興味があった。 そして、それらの書籍を読んだり手法を調べていくうちに、だんだ…
統計の世界には、二つの標本から得られた分散が等しいかそうでないかを確かめるための手法がある。 それが、今回紹介する F 分布と、それを用いた F 検定だ。 なぜ、そんなものがあるかというと、統計には二つの標本を比べるときに分散が等しいかそうでない…
今回のエントリは、以下のエントリの続きになっている。 blog.amedama.jp 上記のエントリでは、統計における基本的な推定の考えを解説した。 また、その例として考えうる最も単純な推定を扱っている。 それというのは、母集団の全ての母数 (パラメータ) が既…
今回は、統計における重要な手法である「推定」について書いてみることにする。 推定は、現実世界の様々な場面で使われている。 例えば、選挙で開票作業が始まった直後に当選確実がニュースで流れることがある。 一体どうしてそんなことが分かるのか、不思議…
今回は R と Python の両方を使って重回帰分析をしてみる。 モチベーションとしては、できるだけ手に慣れた Python を使って分析をしていきたいという気持ちがある。 ただ、計算結果が意図通りのものになっているのかを R の結果と見比べて確かめておきたい…
例えば、あるグループ A と B が別々にテストを受けたとする。 それぞれのグループの人数と平均点、そして分散は分かっているとしよう。 このとき、グループ A と B を合わせた全体での平均や分散は計算することができるだろうか? 結論から言うと、これはで…
例えば、ある六面ダイス (サイコロ) に歪みがないことを調べたいとする。 もしサイコロに歪みが無いなら、出る目の理論的な度数分布はどれも となるはず。 しかし、サイコロの出る目は無限母集団なので、実際にすべてのパターンを試して確認することができな…
ポアソン分布というのは、ごくまれに起こるような事象の確率分布をいう。 この説明を聞いても何のこっちゃという感じだけど、これを使うと滅多に起こらないようなことがある時間内にどれくらい起こりそうなのかが分かる。 もちろん、別に未来を予知している…
条件付き確率というのは、具体的には次のような式で表される。 これは、ある事象 が起こる条件の下で事象 が発生する確率を求める式になっている。 とはいえ、これを見ていても一体どんな状況なのかさっぱり分からなかった。 具体的には と が同時に起こる確…
今回は、データセットのある次元の値から別の次元の値を予測する方法の一つとして、最小二乗法というやり方で回帰直線を求めてみる。 とはいえ、いきなり最小二乗法や回帰直線といわれても何が何やらという感じなので、最初はその説明からしていく。 回帰 ま…
まず、二次元の特徴量をもったデータセットがあるときを考えてみよう。 もし、一方の次元の値が高いときに、もう一方も高い傾向があるときは、両者に正の相関があるという。 反対に、一方の次元の値が高いときに、もう一方は低い傾向があるときは、両者に負…
例えば、次のような二種類のデータセットをプロットしたヒストグラムがあったとする。 どちらも一般正規分布となっているようだ。 このデータセットを、あるテストの点数と捉えてみよう。 本来、テストなら上限値と下限値があるはずだけど、そこは簡略化して…
まず初めに、次のようなヒストグラムがあったとする。 このヒストグラムには、青色と緑色のふたつのグループが含まれている。 それぞれのグループは、平均値や度数が異なるようだ。 果たして、それぞれのグループはどちらの方が値のバラつきが大きいのだろう…